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Exact differential equations have been derived for the sums and differ-
ences of hemispherical radiative flows in an absorbing-emitting me-
dium. A method is given for the solution of these equations for a flat
layer,

In connection with the complexity of solving the in-
tegral equations derived in determining the tempera-
tures in absorbing-emitting media with energy sources,
the differential methods of investigation are of great
interest. The Schuster-Schwarzschild method—known
also as the "forward-backward" approximation—was his-
torically the first. The essence of this method involves
the following. The equatious for the transfer of radia-
tion for opposing hemispheres in the form [1]

cos8 /) (v, 8) = — Iy (1, $)+B(1),
cos®/! (v, ) =1_(1, ) —B(v) (1)

are integrated over the solid angles within the limits
of the correspoding hemispheres (here, and in the fol-
lowing, the derivatives (') are defined according to the
optical distance 7. The quantity B is understood to
mean oT4/r for a noncontinuous radiation spectrum (in
a "gray" medium) or the Planck distribution function
for monochromatic radiation). As a result, we derive
equations for hemispherical radiation flows:

94 (®) = —my(1)qy (v) + 2 B(),
g (%) = m_(x)g— (1) — 2n B(x), (2)

where the auxiliary functions m,(7) and m_(7) are de-
fined as follows [2]:

{ Lde
m, (7) = 2 ,
5 f.cosddo
2
{ I_de
m_ (1= — 2 (3)
]( I _cosddo
(—2m)

Although the functions m+ and m- depend on 7 and
are not equal to each other, in the subject approxima-
tion it is assumed that m, = m. = m = const, which
makes it possible in system (2) to isolate the result-
ing radiant flux q = q, — g-, characterizing the dis-
tribution of the heat sources or sinks. In this case,
with the help of (2), the problem of the temperature of
the medium (B) for a given distribution q (or a given
relationship between B and q) is easily solved. How-
ever, this solution may be regarded as approximate.

As shown in [1, 2], Egs. (2) withthe valuesm, = m_ =
=m = 2 (which corresponds to the assumption in (3)
that I, and I_ are independent of #) yield results close
to reality only for a small optical thickness of the
layer. With a great optical thickness they yield results
accurate to 25%. A more exact solution of (2) (with re-
finement of the values of m+(T) and m_(7) in (3) accord-
ing to the approximate solution) yields no significant
improvement in the results, as is noted at the end of
the article, in the solution of a specific problem.

A better system for the study of radiative heat ex-
change in optically dense media is the system of equa-
tions for the resulting radiant flux q and radiation den-
sity V [2, 3]

cV(®) =—a(®)g(), ¢d@)=—cV@)+4nB(1), (4)

where the auxiliary function is given by

| Ide+ | I'do
a(s) = (F+2 :) (—2m (5)
| Jicostddo+ | Icostddo
(+2x) (-2m)

Even in the first, so-called diffusion approximation
(with a constant value for o = 3), Egs. (4) make it pos-
sible to derive virtually exact results deep within op-
tically dense media. However, near the boundaries or
in optically thin layers the results obtained in this man-
ner are approximate. To find a more exact solution of
the problem near the boundary (with refinement of

(T) according to the first approximation) the utiliza-
tion of Eqgs. (4) leads to difficulties. The problem here
lies in the fact that the value of «(7) at the boundary
tends toward infinity if, as will be demonstrated later
on, a discontinuity in the temperature values occurs

at this boundary.

Here we have derived equations which include the
magnitude of the resulting radiant flux and the auxil-
iary functions which do not become infinite at the
boundaries. In conjunction with these it becomes pos-
sible to derive excellent results both within the depths
of optically dense media and near the boundaries, be-
cause of the possibility of solving the equations by the
method of successive approximations.

Adding and subtracting Egs. (2), while denoting
p=q,+q-and q=q4y —q., we obtain

pPR=—B81q@) ¢@=—y@p(®)+4nB(), (6)
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where

{ Ldo— | I_do

ﬁ(‘l‘) - (+2m) (—2x)
j I.cosddo — j l_cosﬁdm
(+2m) (—2m)
S‘ I.do + ‘S I_de
Y(T) - (+2m) (~2it) X (7)
j [ costda + ﬁ [ _cos & do
(+2m) (—&m)

Let us formulate the boundary conditions for (6) by
means of the following relationships which are valid
for diffusely reflecting surfaces [2):

q(6) = q,(6) —q-(b) = £ Ay[g+ (b) — = By}, (8)

where Ap, is the emissivity of the bounding surface,
By, is the radiation intensity of the surface for Ay =1,
the upper signs (+) correspond to the case in which the
vector T (or q,) is directed toward the boundary sur-
face, and the lower signs (—} correspond to the oppo-
site direction. Using the adopted denotations for p and
q, we transform (8) to the corresponding form

— A

b

p(b)=2mB, +

q(b). (9)

The exact solution for the problem of the tempera-
ture of the medium with the given distribution g(7),
according to (6) and boundary conditions (9), has the
form

4nB(ny=¢ (x) y(n)[2n B, + g{b) —

— [B(@q (). (10)
b

To find the solution of (10) we must know the two
functions B(7) and (7). Their values can be calculated
from (7) if the functions I,(7,4) and I-(7,$) are known.
The latter are solutions of (1):

Ii(t, 8)=C(d)exp(—1sec)d + .

+ E (— Dk cos® § Bl (1),
k=0

I_ (v, ®)= D (8)exp(-+ Tsec d) + Y, cost § B®) (3),
k=0 .

where C(#) and D) are functions defined from the
boundary conditions, while the infinite series are par-
tial solutions of nonuniform equations (1). Subsequently,
for simplicity in analyzing the functions 8 and v we
find C(#) and D($) only when the medium is bounded by
two infinite planes with "black" surfaces (Ay, = 1).

The optical distance between the planes is equal to A.
Here I+(0,+%) and I.(A,$) are, respectively, equal to
the wall-radiation intensities By and Bp, while the
expressions for C and D assume the form

@®

C(®) = B,— ¥, (— 1)tcost & B¥)(0),

k=0

D(®) =By — kzo cost & B(A) exp(— Asecd). (11)
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Substituting the values of I+(7,4) and I-(7,4) with C(#)
and D) acecording to (11) into (7) and representing

dw as 2rsin 4d ¢ in the latter (for the plane case),
we obtain

B(t) = [ B,E, (t) — B,E,(A — 1) —
- E (— 1Y Eqg (1) B#)(0) +

2 Epio(A —1) B® (A) __2 B(2k+1>(1:) ]

k=0

X { ByEy (1) — BAE; (A —7) —

—'2 (— 1) Ept3 (t) B® (0) +

=
+ 2 Epys(A ) BWY(A) —2 s B0 ) r :
b
v = [BoEz () + BuEy (A — ) —
Hg (— 1)tEuta(z) B® (0) —
_k}j)EkH(A — 1) B® (A)+ 275_}._1 B (¢ )] X

X { B.E, (v) + BaEall — 1) —

- 2 (— 1)*E¢13(x) B¥® (0) —

k=0

— \ Evs(A _9BH M) + Z

k—~0 k=0

B2 (1) j,*', (12)

where E, (x) = Su—‘ exp(— xu)du is an integroexponential

1
function of v-th order.
Let us analyze the derived expressions for 8(7) and
¥(T), representing B(7) in the form of the series

2 a, ™ (n=0).

k=0

B(x)=

It is not difficult to prove that within the layer as & —
— « the values of § and v tend independently from the
coefficients gy to constant values of 8 = 3/2 and v = 2.
Indeed, when 7 > 1 and A — T > 1 in the numerator
and the denominator of expressions (12), the term
which does not contain the integroexponential function
(Ey(x » 1) — 0) and which, moreover, exhibits the
greatest power of 7, is decisive with respect to value.
We will refer to these constant values as limiting val-
ues.

If we substitute the found values of I+(7,4) and
I.(7,4) into formula (5), we obtain an expression for
«(T) analogous to expressions (12}
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a(2) =[ BoEy (%) — BoEy (A — ) —
— Y (— 1) Epy (1) BB (0) +
k=0

+ E E (A —7) BA) —Z braw B<2k+l>(r)1 %

k=0

X { ByE;(t) — By B3 (A — 1) —

©) B (0) +

—Z(— 1¥Enes

=0
-1

+ Y Es(a —0) B @) 22k+35(2k+”(<)] . (13)

k=0 k=0

An analysis of expression (13) makes it possible for
us to establish that the limit value of @ = 3, while the
value of o at the boundaries of the layer when B(b) =
# By, become infinite (E,(0) = 1/v — 1). This last fea-
ture of the function «(7) makes it more difficult to
use Eqs. (4) to find a solution for them that is more
exact than the diffusion approximation.

Analogously, substituting the found values of 1. (7,
4) and 1.(7,4) into (3), we can establish that the limit
values of m, and m_ are equal to 2. At the boundaries
of the layer when B(b) = By, the values of m, and m-
as well as 8 and v are finite.

The special form of the found expressions for L(7,
#) and I.(7,4) with the simple boundary conditions does
not disrupt the generality of the limit values: the
boundary effects do not affect the process of radiant-
energy transfer within optically large volumes. Prac-
tically, with & > 10 the values of &, B, ¥, m_, and m-
within the layer are already close to the limit. Conse-
quently, solution of (6) in first approximation, as
well as the solution of (4) in diffusion approximation
(o = 3), can be derived with limit values of g = 3/2 and
v = 2, Equations (4) and (6) here yield identical re-
sults. In second approximation 8(7) and ¥(7) are calcu-
lated from (12) where B(7) corresponds to the solution
in first approximation. If the form of B(T) in first ap-
proximation is sufficiently simple, the calculation of
B(T) and y(7), and then of B(T) in second approximation,
presents no particular difficulty. Here, when all arbi-
trary B(k)(T) are finite in value (i. e., the geries in
expressions (12) are not broken), the function B(7)
must be approximated by a simpler function so that
the number of terms in (12) is small. ¥ it is impossi-
ble to accomplish such an approximation with good ac-
curacy, expressions (12) should be presented in an in-
tegral form convenient for numerical integration:

BT, ¥(x) = { (B, —BOIE, () T

FiBa—B(NE,(A—1)+

SIB(X —B(D)E; (v —x)dx F
0
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A

T{Bw

T

— B Ey(x—=)dx

x{ (B, — B0 Es () F [By — B Ey (b —7) +

T

+ y[B(x)—B(r)]Ez(r—x)dx-?
0

B(7)E, (x——'»)dx} .

dL’;D

The sign (—) corresponds to the expression for 8 and
the sign (+) corresponds to the expression for v.

As an example of a solution for the problem of the
temperature of a medium for known q(7) let us exam-
ine (10) for the case q = const, A —~ e, By =0, Ay =1
(the problem of the stellar photosphere). With an exact
Hopf solution {4] for this problem it becomes possible
to check the convergence of the proposed method of
solution. For the subject case (q < 0) formula (10) as-
sumes the form

B(r)=——q—v(t)[l+ Sﬁ(r)dr] (14)
4n :

In first approximation (with limit values of 8 = 3/2 and
v = 2) from the solution of (14) we obtain the result
known in astrophysics as the Eddington approximation
[1]:

i 3

41,3
By(x) = n(2+4 ) (15)

The greatest deviation (15.5%) in the quantity By(7)
from its exact value is found when 7 = 0: By(0) =
= —q/2m, the exact value of B(0) = —(3q) 1/2/417

Substituting (15) into (12) in which, in this case,
terms with derivatives of B(7) higher than the first
disappear, we obtain expressions for By(T) and vy(T).
Substitution of the latter into (14) yields By(7). The
results of the calculations have demonstrated that the
values of B5(T) and v4(T) vary monotonically from 7/4
(when 7 = 0) to their limit values which they virtually
attain (with accuracy to 1%) when T = 1 (the values of
integroexponential functions were taken from the ta-
bles in [5]).

The maximum divergence between By(7) and the
exact value of B(7) is found at the boundary of the layer
and amounts to 1%. Moreover, according to the second
approximation, Bj(0) — « (because v4(0) — =), which
coincides with the exact Hopf solution. Thus, the meth-
od of successive approximations with use of the initial
values of 8 = 3/2 and ¥ = 2 ensures rapid convergence
for the solution of (14).

The solution of the subject problem by means of
Egs. (4) in first (diffusion) approximation, as well as
in accordance with Eqgs. (6), has the form of (15) {3].
Thus, according to (13), the value of & y(0) becomes in-
finite as a result of B(0) = B;. The numerical calcula-
tions, according to (4), in second approximation there-
fore involves difficulties associated with their behavior
when T = 0.
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The results of the solution for this very problem,
according to (2), are not satisfactory, since in any ap-
proximation the values of m_ and m_ with 7 >1 are vir-
tually equal to 2. As is well known [1, 2], the Schuster-
Schwarzschild approximation obtained in this case
yields results that are accurate to 25%.

In conclusion we present the exact expression for
the resulting radiant flux between two parallel diffuse-
ly reflecting planes. This can be found by solving only
the first of the equations in (6) in accordance with
boundary conditions (9). As a result we obtain

By —n By

T ¢

Tt 1+-2—jﬁ<r)dr

]

In first approximation, if we assume the value of 8(T)
to be equal to its limit value of 3/2, we obtain [2] the
familiar approximation formula according to which
the results of the calculation are in good agreement
with the results of the exact solution. As we can see
from the exact expression (16), as A — « the approxi-
mate and exact formulas coincide (8 — 3/2).

NOTATION

T is the optical distance along direction s; » is the
absorption coefficient; dw is the solid angle element;
¢ is the acute angle between direction ¥ and arbitrary
direction for hemispheres (+27) and (=27); I+(7,4) and
I-(7,8) are the radiation intensities in opposite direc-
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tions; g; and q- are the hemispherical radiant fluxes in
opposite directions; g is the net radiant flux; p is the
total radiant flux; V is the radiation density; «, 8, v,
m,., and m_ are additional functions; T is the temperature;
¢ is the light velocity; o is the Stefan-Boltzmann con-
stant; B is the black-body radiation intensity at thermo-
dynamic equilibrium; A is the optical thickness; Ay, and
By, are the emissivity and radiation intensity of a conven-
tional black surface (at Ay, = 1); B(k)(T) is the k-th or-
der derivative of B(7); Ey(x) is the integroexponential
function of v-th order; b, k, and ¥ are subscripts.
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